ANNUAL REPORT FOR 2002

Lengyel Mitigation Site Craven County Project No. 8.1170806 TIP No. B-2531WM

Office of Natural Environment & Roadside Environmental Unit North Carolina Department of Transportation December 2002

TABLE OF CONTENTS

SUM	IMARY	/	1
1.0	INTF	RODUCTION	2
	1.1	PROJECT DESCRIPTION	2
	1.2	PURPOSE	2
	1.3	PROJECT HISTORY	3
	1.4	DEBIT LEDGER	3
2.0	HYD	ROLOGY	5
	2.1	SUCCESS CRITERIA	5
	2.2	HYDROLOGIC DESCRIPTION	5
	2.3	RESULTS OF HYDROLOGIC MONITORING	5
		2.3.1 Site Data	5
		2.3.2 Climatic Data	8
	2.4	CONCLUSIONS	8
3.0	VEG	SETATION: LENGYEL MITIGATION SITE	11
	3.1	SUCCESS CRITERIA	11
	3.2	DESCRIPTION OF PLANTED AREAS	11
	3.3	RESULTS OF VEGETATION MONITORING	12
	3.4	CONCLUSIONS	15
4.0	OVE	RALL CONCLUSIONS/RECOMMENDATIONS	16

LIST OF FIGURES

Figure 1.	Site Location Map	4
Figure 2.	Lengyel Site Gauge Location Map	7
Figure 3.	Lengyel Site Hydrologic Monitoring Results	9
Figure 4.	Lengyel Site 30-70 Percentile Graph, New Bern, NC	10
	<u>LIST OF TABLES</u>	
Table 1.	Lengyel Mitigation Site Debit Ledger	3
Table 2.	Hydrologic Monitoring Results	6
Table 3.	Vegetation Monitoring Statistics, by zone and plot	12
	APPENDICES	

APPENDIX A SURFACE AND GROUNDWATER GAUGE PLOTS

APPENDIX B SITE PHOTOS

SUMMARY

The following report summarizes the monitoring activities that have occurred in the fourth year of monitoring for hydrology and vegetation at the Lengyel Mitigation Site. The Lengyel Mitigation Site is a brackish marsh restoration/preservation site divided into two areas. The first area is a reference marsh ecosystem (preservation) that contains two surface water gauges and one groundwater gauge. The second area is a restoration site that also contains two surface water gauges and one groundwater gauge. The reference marsh is to be used as a determination of hydrologic success if the restoration area does not meet established success criteria.

The year 2002 represents the fourth year of hydrologic monitoring for the Lengyel Mitigation Site. While one surface gauge indicated constant surface water throughout the growing season, the other three gauges indicated that the site was inundated for a minimum of 25% of the growing season. Hydrologic data collected for groundwater gauges showed continuous saturation for a period exceeding 25% of the growing season.

The success criteria for vegetation sampling follow the most recent guidelines from the National Marine Fisheries Service guidelines. Vegetation data did not meet the established success criteria. The percent frequency of the target species has dropped slightly due to the presence of many other wetland species throughout the site. However, the vegetation scale value has increased significantly and is on target to meet success criteria next year. Additional observations include the sighting of ospreys on the nesting pole and the presence of crabs and other aquatic organisms in the constructed tidal swale.

NCDOT recommends the continued monitoring of the Lengvel Mitigation Site.

1.0 INTRODUCTION

1.1 Project Description

The Lengyel Mitigation Site is a 13.198-acre brackish marsh restoration/preservation project located in Craven County, North Carolina. The site is located east of the intersection of US 70 and US 70 Business and provides compensatory mitigation for impacts associated with the construction of the US 17 Neuse River Bridge (TIP No. B-2531) (Figure 1). Mitigation goals for the site include approximately 6.54 acres of brackish marsh restoration, 5.25 acres of brackish marsh preservation, and 0.85 acres of upland buffer. The site was constructed in April of 1998; however, planting activities were not complete until April 1999. The fourth year of monitoring at the site has just been completed.

1.2 Purpose

In order to demonstrate successful mitigation, hydrologic and vegetative monitoring must be conducted for a minimum of five years. Vegetation success criteria are based on the National Marine Fisheries Service guidelines. Hydrologic success criteria are based on federal guidelines for wetland mitigation. The following report details the results of hydrologic and vegetation monitoring during the 2002 growing season at the Lengyel mitigation site. Included in this report are analyses of hydrologic and vegetative monitoring results, discussion of local climate conditions throughout the growing season, and updated site photos.

1.3 Project History

April 1998 April 1998 March 1999 April 1999 June 1999 April-November 1999 October 1999 March-November 2000 August 2000 October 2000 March-November 2001	Site Construction Began Site planted (Phase I) Surface Water Gauges Installed Planting Completed (Phase II) Site Construction Finished Hydrologic Monitoring (1 yr.) Vegetation Monitoring (1 yr.) Hydrologic Monitoring (2 yr.) Vegetation Monitoring (2 yr.) Two Groundwater Gauges Installed
ŭ	
March-November 2001 August 2001 March-November 2002	Hydrologic Monitoring (3 yr.) Vegetation Monitoring (3 yr.) Hydrologic Monitoring (4 yr.)
July 2002	Vegetation Monitoring (4 yr.)

1.4 Debit Ledger

Table 1. Lengyel Mitigation Site Debit Ledger

Cita Uahitat		TIP Debit		
Site Habitat	Acres at Start	Acres Remaining	% Remaining	B-2531
Marsh restoration	7.2	5.64	78.33	1.56
Marsh preservation	4.7	4.7	100.00	
Total	11.9	10.34	86.89	

Figure 1. Site Location Map

2.0 HYDROLOGY

2.1 Success Criteria

The hydrologic success criteria established for the Lengyel Mitigation Site includes: 1) site inundation or saturation within 12 inches of the ground surface for 25 percent of the growing season, or should the restoration fail to meet this criteria, 2) statistical comparison between the reference marsh area and the restoration area to determine if hydrology is significantly different. The site specific criteria are more stringent than the current federal guidelines that require a site to be inundated or saturated (within 12" of the surface) by surface or groundwater for a consecutive 5 - 12.5% of the growing season. Areas inundated or saturated less than 5% of the growing season are classified as non-wetlands.

The growing season in Craven County begins on March 18 and ends November 14. The dates correspond to a 50% probability that air temperature will drop to 28° F or lower after March 18 and before November 14.1 Thus the growing season is 240 days; the established minimum hydrology requires 25% of this season, or 60 days. Local climate must represent average conditions for the area.

2.2 Hydrologic Description

A combination of wave action, wind-driven tides, rainfall, and high water is expected to keep the marsh consistently inundated; therefore, surface gauges were installed to record surface water levels. Four surface water gauges were installed at the site on March 31, 1999 (Figure 2). Automatic readings are taken at three-hour intervals daily throughout the growing season. Two additional groundwater gauges were installed on October 2, 2000 to maintain compliance with the CAMA, USACE, and NCDWQ permit conditions. The groundwater gauges record water levels on a daily basis. No rain gauge is located on the site, so rainfall data from a New Bern rain gauge (data supplied by the NC State Climate Office) is used to supplement the site's data. The data collected in 2002 represents the fourth full growing season for hydrologic monitoring.

2.3 Results of Hydrologic Monitoring

2.3.1 Site Data

The maximum number of consecutive days that saturation within 12 inches of the ground surface occurred was determined for each groundwater monitoring gauge. This number was converted into percentage of the 240 day growing season (March 18 – November 14).

Table 2 provides all of the 2002 hydrologic results. All four of the surface gauges showed continuous site inundation or saturation; as was required, site inundation

¹ Soil Conservation Service, Soil Survey of Craven County, North Carolina, 1989.

exceeded 25 percent of the growing season. Both of the groundwater gauges also indicated saturation or inundation for more than 25% of the growing season. In addition, the final data from the constructed site was comparable to the results from gauges located in reference areas.

Table 2. 2002 Hydrologic Monitoring Results

Monitoring Gauge	< 5.0%	5.0 – 12.5%	12.5 - 25.0%	> 25.0%	Actual %	Success Dates
LSGW1				✓	40.5	Jul 11 - Oct 16
LSGW2				✓	52.9	Jul 10 – Nov 14
LSG1				✓	100.0*	Mar-18 – Nov 14
LSG2				√	100.0*	Mar-18 – Nov 14
LSG3				✓	100.0*	Mar-18 – Nov 14
LSG4				1	100.0	Mar-18 – Nov 14

Shaded gauges are reference gauges.

Specific Gauge Problems: LSGW-1 malfunctioned on October 16, 2002; the gauge was repaired and reset to read on November 16, 2002.

Appendix A contains charts of the water depth for each surface and groundwater gauge during 2002. The groundwater monitoring gauge graphs are designed to show the reaction of groundwater to specific rainfall events. All significant saturation periods are noted on the groundwater gauge graphs, as are daily precipitation events measured at the New Bern rain gauge. Rainfall events are not included on the surface gauge graphs. These plots are designed to show periods of site inundation.

^{*} While LSG-4 did show inundation (water levels remained just above the ground surface for the entire season), the remaining three gauges showed water levels that fluctuated around the ground surface elevation for most of the season. These gauges were saturated within 12 inches of the surface for the entire season and did show inundation for at least 25% of the season as required.

Figure 2. Lengyel Gauge Location Map

2.3.2 Climatic Data

Figure 4 is a comparison of the 2002 monthly rainfall to the historical precipitation (collected between 1931 and 2002) for New Bern, North Carolina. This comparison gives an indication of how 2002 relates to historical data in terms of climate conditions. All off site data was provided by the NC State Climate Office. Data for November and December 2002 was unavailable at the time this report was published.

This graph is used to indicate the general precipitation conditions for the surrounding area. The data obtained indicates lower than normal precipitation February, April, May, and November, and above average precipitation for March and July. November and December 2001, January, June, August, September, and October experienced normal rainfall. Overall, the site maintained excellent hydrologic results in a year of average climatic conditions.

2.4 Conclusions

The year 2002 represents the fourth year of hydrologic monitoring for the Lengyel Mitigation Site. Surface water indicated continuous site inundation throughout the growing season at one of the gauges, with inundation for at least 25% of the growing season shown at the remaining three surface gauges. Data collected from the onsite groundwater gauges showed continuous saturation for a period exceeding 25% of the growing season. The 2002 data was collected during a year of average rainfall totals. NCDOT will continue to monitor the site.

Lengyel 30-70 Percentile Graph New Bern, NC

Figure 4. Lengyel Site 30-70 Percentile Graph, New Bern, NC

3.0 VEGETATION

3.1 Success Criteria

The vegetative marsh success of the wetland site will be determined in accordance with NMFS Guidelines. Monitoring plots found to be located within the open water channel will not be evaluated, and will not count toward the final count of plots. The vegetation component of the wetland site will be deemed successful if the following criteria are met: at year five, the average of all plots should have a scale value of 5 (75% vegetative cover) consisting of wetland herbaceous species, not including any invasive species.

A minimum of 70% of the plots shall contain the target (planted) species.

3.2 Description of Planted Areas

The following plant communities were planted in the Marsh Grass Area:

Marsh Planting: (approximately 2.46 hectares)

Spartina cynosuroides, Big Cordgrass

3.3 Results of Vegetation Monitoring

						1	
			les			S	
			oia			<u> </u>	
			ın.			s 0	
		_	soz			38	
		93	ŝ	d	ė.	동룡	
		ž.	ıa	S S	ss	e e	
╽≝	*	<u>-</u>	Ţ.	nd.	cn	Ē 0;	
ZONE	Plot#	Scale Factor	Spartina cynosuroides	Scirpus sp.	Juncus sp.	Frequency Big Cordgrass only)	Notes
_ N	1	5.0	S	~		<u> </u>	
-	•				1		Baccharis halimifolia, Ragweed, Lespedeza, Winged Elm, Galium sp.
	2	4.0			,		Goldenrod
	3	5.0		✓			Pennywort, Aster sp., Sagittaria sp.
	4	5.0			✓		Goldenrod
	5	5.0		✓	✓		Goldenrod, Pennywort
	6	5.0			1		Goldenrod
	7	5.0			1		Baccharis halimifolia, Ragweed, Pennywort, Aster sp.
\vdash					1		
\vdash	8	5.0			•		Goldenrod, B. halimifolia, Pennywort, Verbena sp. Panicum sp.
	9	5.0		✓			Pluchea sp., Pennywort
	10	5.0			✓		Goldenrod, Baccharis halimifolia, Pennywort
	11	2.0		✓			Baccharis halimifolia, Pennywort
	12	5.0			1		Goldenrod, Baccharis halimifolia
	13	5.0			1		Myrica sp., Baccharis halimifolia, Goldenrod
	14	5.0			1		Alternanthera philoxeroides, Pennywort, Goldenrod
					1		
	15	5.0		,	1		Polygonum sp., Kosteletzkya sp., Pennywort, Pluchea sp.
	16	5.0		√	•		Baccharis halimifolia, Ragweed, Pennywort, Aster sp.
	17	5.0		✓			Pluchea sp., Pennywort
	18	5.0			✓		Polygonum sp., Goldenrod, Pericum sp.
	19	5.0			✓		Goldenrod, Baccharis halimifolia
	20	5.0	✓		✓	✓	Aster sp., Kosteletzkya sp.
	21	5.0			1		Goldenrod, Baccharis halimifolia
	22	4.0					Panicum virgatum, B. halimifolia, Eupatorium sp.,
		5.0			1		
-	23			,	_		Goldenrod
	24	5.0		1			Goldenrod, Baccharis halimifolia, Ampelopsis arborea
	25	5.0		√			Kosteletzkya sp., Pennywort, Polygonum sp., Typha sp.
	26	5.0			✓		Goldenrod, Baccharis halimifolia
	27	4.0					Panicum virgatum , B. halimifolia , Goldenrod
	28	5.0		✓	✓		Goldenrod, Baccharis halimifolia
	29	5.0	1	✓	✓	✓	Goldenrod. Baccharis halimifolia
	30	5.0					Goldenrod, Baccharis halimifolia, Myrica sp., Kosteletzkya sp.
	31	5.0					
\vdash				1			Verbena sp., Myrica sp., Lespedeza, Poison Ivy,
	32	5.0		•			Goldenrod, Pennywort, Hypericum sp., Pluchea sp.
lder	33	5.0					Verbena sp., Lespedeza, Goldenrod, Fennel, Oenothera sp.
	34	5.0			✓		Goldenrod, Ragweed
	35	5.0			✓		Goldenrod, Typha sp., Pennywort, Baccharis halimifolia
	36	5.0	✓	✓		✓	Pennywort, Hibiscus sp., A. philoxeroides, Hydrocytle sp., Aster sp.
	37	5.0	1		1	1	Goldenrod, Pennywort, Polygonum sp.
	38	5.0		√	√		Goldenrod, Pennywort
	39	5.0			1		Pennywort, Aster sp., Typha sp., Mikania scandens, Cyperus sp.
					1		
	40	5.0		,	•		Myrica sp., Baccharis halimifolia, Goldenrod
	41	2.0		✓			Baccharis halimifolia, Pennywort
	42	5.0					Verbena sp., Goldenrod, Baccharis halimifolia
	43	5.0					Black willow, Panicum virgatum
	44					-	Open Water
	4.5	5.0					Pennywort, Pluchea sp., Sagittaria sp., Aster sp., Hydrocoytle sp.
	- 10	٥.٠					1. cm., cm., racinca sp., sagmaria sp., fister sp., fivarocovite sp.

			SS			_	
			Spartina cynosuroides			Frequency (Big Cordgrass only)	
			ur			0 8	
		ŗ	nox			Las	
		ıcte	1 C)	sp.	sp.	rdg	
ш	#	Scale Factor	tinc	Scirpus sp.	Juncus sp.	Frequency (Big Cords	
ZONE	Plot#	cale	oar	cirt	зик	red ≌ig	
Ň			S	\$		F (F)	Notes
	46	5.0			•		Goldenrod, Panicum virgatum, Baccharis halimifolia
	47	5.0		1	1		Panicum virgatum, Hibiscus sp., Polyganum sp., Pennywort, Ragweed
	48	3.0		1	1		Pennywort, Baccharis halimifolia, Goldenrod, Eupatorium sp.
	49	5.0		√	•		Polygonum sp., Pluchea sp., Pennywort, Kosteletzkya sp.
	50	5.0		•			P. virgatum, Polyganum sp., Pennywort, Aster sp., Mikania scandens
	51	5.0		1			Pluchea sp., Polyganum sp., Alternanthera philoxeroides, Goldenrod
	52	5.0		•	1		Goldenrod, Pennywort
	53	5.0			✓		Goldenrod, Pennywort, Baccharis halimifolia
	54	5.0			√		Black willow, Verbena sp., Myrica sp., Baccharis halimifolia
\vdash	55	5.0			_		Lespedeza, Verbena sp., Hibiscus sp.
	56	5.0	1	1	1	1	Panicum virgatum, Hibiscus sp., Polyganum sp., Pennywort, Ragweed
	57	5.0	•	✓	•	•	Aster sp., Pluchea sp., Typha sp.
	58	5.0		1	1		Sagittaria sp., Polvganum sp., Aster sp., Pennywort
	59	5.0		•	1		Pennywort, Polyganum sp.
	60	5.0			1		Goldenrod, Ragweed
	62	5.0			_		Goldenrod Open Water
	63	5.0		1			Hypericum sp., Polyganum sp., Alternanthera philoxeroides, Aster sp.
	64	3.0					Open Water
	65	4.0			1		Black willow, Goldenrod, B. halimifolia
	66	5.0		√			Pluchea sp., Pennywort
	67	5.0		1			Goldenrod
	68	5.0					Goldenrod, Hibiscus sp., Verbena sp., Myrica sp., P. virgatum
	69	5.0			1		Goldenrod, B. halimifolia
	70	5.0		1	1		Polyganum sp., Aster sp., Mikania scandens, Verbena sp., B. halimifolia
	71	4.0					P. aciculare, P. virgatum, Eupatorium sp., B. halimifolia
	72	5.0		√			Pluchea sp., Pennywort
	73	5.0			\		Goldenrod, <i>Pluchea</i> sp., Pennywort
	74	5.0			√		Goldenrod
	75	5.0		✓			Pennywort, Mikania scandens, Pluchea sp., Verbena sp.
	76	5.0			✓		Goldenrod, Ragweed
	77	5.0			✓		Myrica sp., Blackberry, Goldenrod, Pennywort
	78	4.0	✓	✓		✓	Pennywort, Baccharis halimifolia
	79	5.0	✓			✓	Sagittaria sp., Kosteletzkya sp., Pennywort
	80	5.0	✓			✓	A. philoxeroides, Pluchea sp., Aster sp., Polyganum sp.
	81	5.0		\			Polyganum sp., Pluchea sp., A. philoxeroides, Hypericum sp., Pennywort
	82	5.0			✓		Cyperus sp., Ragweed, B. halimifolia, Verbena sp., Pennywort
	83	5.0			\		Goldenrod, Baccharis halimifolia
	84	5.0		✓			Aster sp., Polyganum sp., A. philoxeroides
	85	5.0			✓		Aster sp., Polyganum sp., A. philoxeroides
	86	3.0			✓		Eupatorium sp., P. virgatum, Pennywort
	87	3.0			✓		Eupatorium sp., P. virgatum, Pennywort
	88	5.0			1		Goldenrod, B. halimifolia, Pennywort, Verbena sp. Panicum sp.
	89	3.0			1		Eupatorium sp., P. virgatum, Pennywort
	90	4.0			✓		Sagittaria sp., Typha sp.

Section Sect								
92 4.0	ZONE	Plot#	Scale Factor	Spartina cynosuroides	Scirpus sp.	ds snoung		
93 5.0			5.0	✓	\		√	
94		92	4.0					
95 5.0		93	5.0		✓			Ptilimnium sp., L.L. Sagittaria, Goldenrod
96		94						open water
97		95	5.0			\		Smartweed, Goldenrod, Ptilimnium sp., L.L. Sagittaria
98 5.0		96						open water
99 4.0		97						
99 4.0			5.0	√			√	Aster sp., Smartweed
100 5.0		99	4.0		-			Aster sp., Pluchea sp., Rotala sp., Blue stem
102 5.0			5.0		1			Ptilimnium sp.
103 5.0		101		✓			√	
104 5.0		102	5.0		√			
105 5.0		103	5.0	✓			√	
106 5.0		104	5.0	√			√	Ptilimnium sp., Juncus sp., Goldenrod, L.L. Sagittaria
107 5.0		105	5.0	✓		✓	✓	
108		106	5.0				✓	Goldenrod, Ptilimnium sp., Baccharis sp.
108		107	5.0	✓	✓		✓	Fennel, Goldenrod, Black willow
110 5.0 Fennel, Goldenrod		108						open water
Frequency (Percentage of 68.4% 60.2% 19.4% 68.4% Plots with Desired Specie) Sum Scale Value 476 Total Number of Plots 98		109	5.0	✓		✓	✓	Pennywort, Ptilimnium sp.
Plots with Desired Specie) Sum Scale Value 476 Total Number of Plots 98		110	5.0					Fennel, Goldenrod
Plots with Desired Specie) Sum Scale Value 476 Total Number of Plots 98								
Sum Scale Value 476 Total Number of Plots 98	Frequency (Percentage of		68.4%	60.2%	19.4%	68.4%		
Total Number of Plots 98	Plots v	with Desir	ed Specie)					
Vegetative Cover (Scale Value) 4.9								
	Vegeta	tive Cover	(Scale Value)				4.9	

Site Notes: Site appears to be converting to mostly *Juncus* and *Scirpus* species. 39.3% frequency of *Scirpus* sp., and 58% frequency of *Juncus* sp.

3.4 Conclusions

- Percent Frequency of Target Species (Big Cordgrass)
 Frequency of 70% required.
- Vegetative Cover Scale Value
 Scale Value of 5 required for year 5.

Of the 4.8 hectares (11.9 acres) of this site, approximately 2.46 hectares (6.1 acres) involved marsh planting. The percent frequency of target species does not meet the success criteria. The cover scale value is on target for the fourth year of monitoring. Based on the 2002 vegetation monitoring, the frequency of *Spartina cynosuroides* is decreasing. However, the site appears to be converting to a marsh system dominated primarily by *Juncus* species (58.0% frequency) and *Scirpus* species (39.3% frequency).

The 2002 vegetation monitoring revealed a combined frequency of 86.0% for *Spartina cynosuroides*, *Juncus* sp., and *Scirpus* sp. Based upon this combined frequency, NCDOT feels that the mitigation goals for the vegetation restoration as stated in the Final Wetland Mitigation Plan (August 2000) are still being met. The open water channel within the site was measured with GPS equipment in 2001 and is shown on the attached map.

NCDOT will continue vegetation monitoring at the Lengyel Mitigation Site.

4.0 OVERALL CONCLUSIONS/RECOMMENDATIONS

- Hydrology has met the success criteria for the fourth year.
- Although the percent frequency of target species did not meet the success criteria, the site is establishing wetland vegetation. The vegetation cover scale value has significantly increased and is on target to meet the success criteria in 2002.
- Monitoring should continue for both hydrology and vegetation.

APPENDIX A SURFACE AND GROUNDWATER GAUGE PLOTS

APPENDIX B

SITE PHOTOS

LENGYEL

Photo 2

Photo 3

Photo 4

Photo 5

Photo 6

